Photocoupler
Product Data Sheet
CNY17-1 THRU CNY17-4 SERIES
Spec No.: DS-70-99-0001
Effective Date: 12/11/2015
Revision: C
1. DESCRIPTION

1.1 Features

- Current transfer ratio (CTR : MIN. 40% at I_\text{F} = 10mA, V_{CE} = 5V)
- High collector-emitter voltage
 \[V_{\text{CEO}} = 70V \]
- High input-output isolation voltage
 \[\text{Viso} = 5,000\text{Vrms} \]
- Response time (tr : TYP. 5\mu s at VCE = 10V, IC = 2mA, RL = 100\Omega)
- Dual-in-line package:
 - CNY17-1-V, CNY17-2-V, CNY17-3-V, CNY17-4-V
- Wide lead spacing package:
 - CNY17-1M-V, CNY17-2M-V, CNY17-3M-V, CNY17-4M-V
- Surface mounting package:
 - CNY17-1S-V, CNY17-2S-V, CNY17-3S-V, CNY17-4S-V
- Tape and reel packaging:
 - CNY17-1S-TA-V, CNY17-2S-TA-V, CNY17-3S-TA-V, CNY17-4S-TA-V
 - CNY17-1S-TA1-V, CNY17-2S-TA1-V, CNY17-3S-TA1-V, CNY17-4S-TA1-V
- Safety approval
 - UL approved (No. E113898)
 - TUV approved (No. R9653630)
 - CSA approved (No. CA91533-1)
 - FIMKO approved (No. 193422-01)
 - VDE approved (No. 40015248)
 - BSI approved (No. 9018-9)
 - CQC approved (No. CQC11001061921-2)
- Creepage distance > 8.0 mm ; Clearance > 8.0 mm
- The relevant models are the models Approved by VDE according to DIN EN 60747-5-5

Approved Model No.: CNY17-1-V, CNY17-2-V, CNY17-3-V, CNY17-4-V
 - CNY17-1M-V, CNY17-2M-V, CNY17-3M-V, CNY17-4M-V
 - CNY17-1S-V, CNY17-2S-V, CNY17-3S-V, CNY17-4S-V
 - CNY17-1S-TA-V, CNY17-2S-TA-V, CNY17-3S-TA-V, CNY17-4S-TA-V
 - CNY17-1S-TA1-V, CNY17-2S-TA1-V, CNY17-3S-TA1-V, CNY17-4S-TA1-V

VDE approved No.: 40015248 (According to the specification DIN EN 60747-5-5)

- Operating isolation voltage VIORM : 850V (Peak)
- Transient voltage VTR : 6000V (Peak)
- Pollution : 2 (According to VDE 0110-1 : 1997-04)
- Clearances distance (Between input and output) : 7.0mm (MIN.)
- Creepage distance (Between input and output) : 7.0mm (MIN.)
- Isolation thickness between input and output : 0.4mm (MIN.)
Safety limit values Current (Isi) : 400mA (Diode side)
Power (Psi) : 700mW (Phototransistor side)
Temperature(Tsi) : 175°C

In order to keep safety electric isolation of photocoupler, please set the protective circuit to keep within safety limit values when the actual application equipment troubled.

- Indication of VDE approval prints “V” on sleeve package.
- RoHS Compliance
 All materials be used in device are followed EU RoHS directive (No.2002/95/EC).
- ESD pass HBM 8000V/MM2000V
- MSL class 1

1.2 Applications

- Power Supply regulators
- Digital logic inputs
- Microprocessor inputs
- Appliance Sensor Systems
- Industrial Controls
2. PACKAGE DIMENSIONS

2.1 CNY17-1-V, CNY17-2-V, CNY17-3-V, CNY17-4-V:

2.2 CNY17-1M-V, CNY17-2M-V, CNY17-3M-V, CNY17-4M-V:

Notes:
1. Year date code.
2. 2-digit work week.
4. Model No.: CNY17-1, CNY17-2, CNY17-3, CNY17-4
2.3 CNY17-1S-V, CNY17-2S-V, CNY17-3S-V, CNY17-4S-V:

Notes:
1. Year date code.
2. 2-digit work week.
4. Model No.: CNY17-1, CNY17-2, CNY17-3, CNY17-4
2. TAPING DIMENSIONS

CNY17-1S-TA-V, CNY17-2S-TA-V, CNY17-3S-TA-V, CNY17-4S-TA-V :

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Dimension in mm (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape wide</td>
<td>W</td>
<td>16±0.3 (0.63)</td>
</tr>
<tr>
<td>Pitch of sprocket holes</td>
<td>P₀</td>
<td>4±0.1 (0.15)</td>
</tr>
<tr>
<td>Distance of compartment</td>
<td>F</td>
<td>7.5±0.1 (0.295)</td>
</tr>
<tr>
<td>Distance of compartment to compartment</td>
<td>P₁</td>
<td>12±0.1 (0.472)</td>
</tr>
</tbody>
</table>
4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings at Ta=25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Current</td>
<td>I_F</td>
<td>60</td>
<td>mA</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>V_R</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P</td>
<td>100</td>
<td>mW</td>
</tr>
<tr>
<td>Collector - Emitter Voltage</td>
<td>V_{CEO}</td>
<td>70</td>
<td>V</td>
</tr>
<tr>
<td>Emitter - Collector Voltage</td>
<td>V_{ECO}</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Collector - Base Voltage</td>
<td>V_{CBO}</td>
<td>70</td>
<td>V</td>
</tr>
<tr>
<td>Collector Current</td>
<td>I_C</td>
<td>150</td>
<td>mA</td>
</tr>
<tr>
<td>Collector Power Dissipation</td>
<td>P_C</td>
<td>150</td>
<td>mW</td>
</tr>
<tr>
<td>Total Power Dissipation</td>
<td>P_{tot}</td>
<td>250</td>
<td>mW</td>
</tr>
<tr>
<td>*1 Isolation Voltage</td>
<td>V_{iso}</td>
<td>5000</td>
<td>Vrms</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{opr}</td>
<td>-55</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>-55</td>
<td>°C</td>
</tr>
<tr>
<td>*2 Soldering Temperature</td>
<td>T_{sol}</td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

*1. AC For 1 Minute, R.H. = 40 ~ 60%

 Isolation voltage shall be measured using the following method.

 (1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.

 (2) The isolation voltage tester with zero-cross circuit shall be used.

 (3) The waveform of applied voltage shall be a sine wave.

*2. For 10 Seconds
4.2 ELECTRICAL OPTICAL CHARACTERISTICS at Ta=25°C

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Voltage</td>
<td>VF</td>
<td>—</td>
<td>1.45</td>
<td>1.65</td>
<td>V</td>
<td>IF=60mA</td>
</tr>
<tr>
<td>Reverse Current</td>
<td>IR</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>µA</td>
<td>VR=6V</td>
</tr>
<tr>
<td>Terminal Capacitance</td>
<td>Ct</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>pF</td>
<td>V=0, f=1KHz</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector Dark Current</td>
<td>ICEO</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>nA</td>
<td>VCE=10V, IF=0</td>
</tr>
<tr>
<td>Collector-Emitter Breakdown Voltage</td>
<td>BVCEO</td>
<td>70</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>IC=0.1mA, IF=0</td>
</tr>
<tr>
<td>Emitter-Collector Breakdown Voltage</td>
<td>BVECO</td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>IE=10µA, IF=0</td>
</tr>
<tr>
<td>Collector-Base Breakdown Voltage</td>
<td>BVCBO</td>
<td>70</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>IC=0.1mA, IF=0</td>
</tr>
<tr>
<td>TRANSFER CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current *Transfer Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td>IF=10mA, VCE=5V</td>
</tr>
<tr>
<td>CNY17-1</td>
<td>CTR</td>
<td>40</td>
<td>—</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNY17-2</td>
<td></td>
<td>63</td>
<td>—</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNY17-3</td>
<td></td>
<td>100</td>
<td>—</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNY17-4</td>
<td></td>
<td>160</td>
<td>—</td>
<td>320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-Emitter Saturation Voltage</td>
<td>VCE(sat)</td>
<td>—</td>
<td>—</td>
<td>0.3</td>
<td>V</td>
<td>IF=10mA, IC=2.5mA</td>
</tr>
<tr>
<td>Isolation Resistance</td>
<td>Riso</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>GΩ</td>
<td>DC500V, 40 ~ 60% R.H.</td>
</tr>
<tr>
<td>Floating Capacitance</td>
<td>Cf</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>pF</td>
<td>V=0, f=1MHz</td>
</tr>
<tr>
<td>Response Time (Rise)</td>
<td>tr</td>
<td>—</td>
<td>5</td>
<td>10</td>
<td>µs</td>
<td>VCE=10V, IC=2mA</td>
</tr>
<tr>
<td>Response Time (Fall)</td>
<td>tf</td>
<td>—</td>
<td>5</td>
<td>10</td>
<td>µs</td>
<td>RL=100Ω</td>
</tr>
</tbody>
</table>

\[\text{CTR} = \frac{I_C}{I_F} \times 100\% \]
4.3 Isolation Specification According to VDE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Rating</th>
<th>Unit</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class of environmental test</td>
<td>-</td>
<td>DIN IEC68</td>
<td>55/100/21</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pollution</td>
<td>-</td>
<td>DIN VDE0110</td>
<td>2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Maximum Operating Isolation Voltage</td>
<td>V_{ORM}</td>
<td>-</td>
<td>850</td>
<td>V_{PEAK}</td>
<td></td>
</tr>
<tr>
<td>Partial Discharge Test Voltage (Between Input and Output)</td>
<td>Diagram 1</td>
<td>V_{pr}</td>
<td>tp=60s, qc<5pC</td>
<td>1275</td>
<td>V_{PEAK}</td>
</tr>
<tr>
<td></td>
<td>Diagram 2</td>
<td>V_{pr}</td>
<td>tp=1s, qc<5pC</td>
<td>1594</td>
<td>V_{PEAK}</td>
</tr>
<tr>
<td>Maximum Over-voltage</td>
<td>$V_{INITIAL}$</td>
<td>$I_{IN} = 10s$</td>
<td>6000</td>
<td>V_{PEAK}</td>
<td></td>
</tr>
</tbody>
</table>

Safety Maximum Ratings

1) Case Temperature	T_{SI}	$I_{F} = 0, P_{C} = 0$	175	°C	Refer to the Figure 1, 3
2) Input Current	I_{SI}	$P_{C}=0$	400	mA	
3) Electric Power (Output or Total Power Irrsipation)	P_{SI}	-	700	mW	

Isolation Resistance

| R_{ISO} (Test Voltage Between Input and Output: DC500V) | $T_{A}=T_{SI}$ | MIN.10^9 | $T_{A}=T_{opr}(MAX.)$ | MIN.10^{11} | $T_{A}=25$ °C | MIN.10^{12} |

Precautions in performing isolation test

* Partial discharge test methods shall be the ones according to the specifications of DIN EN 60747-5-5

* Please don’t carry out isolation test (V_{ISO}) over $V_{INITIAL}$. This product deteriorates isolation characteristics by partial discharge due to applying high voltage (ex. $V_{INITIAL}$). And there is possibility that this product occurs partial discharge in operating isolation voltage (V_{ORM}).
4.4 PARTIAL DISCHARGE TEST METHOD

Method (A) for type testing and random testing.

\[\begin{align*}
&V_{PR} \\
&V_{IN INTIAL} \\
&V_{DOM} \\
&V \\
&t_1, t_2 = 1 \text{ to } 10s \\
&t_3, t_4 = 1s \\
&\text{tp (Partial Discharge Measuring Time)} = 60s \\
&\text{tb} = 62s \\
&t_{ini} = 10s \\
&t_3, t_4 = 0.1s \\
&\text{tp (Partial Discharge Measuring Time)} = 1s \\
&\text{tb} = 1.2s \\
\end{align*} \]

Method (B) for routine testing.

The partial discharge level shall not exceed 5 pC during the partial discharge measuring time interval \(t_p \) under the test conditions shown above.
5. CHARACTERISTICS CURVES

Fig.1 Forward Current vs. Ambient Temperature

- Forward current \(I_f \) (mA) vs. Ambient temperature \(T_a \) (°C)

Fig.2 Collector Power Dissipation vs. Ambient Temperature

- Collector power dissipation \(P_c \) (mW) vs. Ambient temperature \(T_a \) (°C)

Fig.3 Collector-emitter Saturation Voltage vs. Forward Current

- Collector-emitter saturation voltage \(V_{CE(sat)} \) (V) vs. Forward current \(I_c \) (mA)

Fig.4 Forward Voltage vs. Forward Current

- Forward voltage \(V_f \) (V) vs. Forward current \(I_f \) (mA)

Fig.5 Current Transfer Ratio vs. Forward Current

- Current transfer ratio \(CTR \) (%) vs. Forward current \(I_f \) (mA)

Fig.6 Collector Current vs. Collector-emitter Voltage

- Collector current \(I_c \) (mA) vs. Collector-emitter voltage \(V_{CE} \) (V)
Photocouplers
CNY17-1-V thru CNY17-4-V SERIES

Fig.7 Relative Current Transfer Ratio vs. Ambient Temperature

Fig.8 Collector-emitter Saturation Voltage vs. Ambient Temperature

Fig.9 Collector Dark Current vs. Ambient Temperature

Fig.10 Response Time vs. Load Resistance

Test Circuit for Response Time

Test Circuit for Frequency Response
6. TEMPERATURE PROFILE OF SOLDERING

6.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

<table>
<thead>
<tr>
<th>Profile item</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preheat</td>
<td></td>
</tr>
<tr>
<td>- Temperature Min (T_{\text{Smin}})</td>
<td>150°C</td>
</tr>
<tr>
<td>- Temperature Max (T_{\text{Smax}})</td>
<td>200°C</td>
</tr>
<tr>
<td>- Time (min to max) (ts)</td>
<td>90±30 sec</td>
</tr>
<tr>
<td>Soldering zone</td>
<td></td>
</tr>
<tr>
<td>- Temperature (T_L)</td>
<td>217°C</td>
</tr>
<tr>
<td>- Time (t_L)</td>
<td>60 sec</td>
</tr>
<tr>
<td>Peak Temperature (T_P)</td>
<td>260°C</td>
</tr>
<tr>
<td>Ramp-up rate</td>
<td>3°C / sec max.</td>
</tr>
<tr>
<td>Ramp-down rate</td>
<td>3~6°C / sec</td>
</tr>
</tbody>
</table>

![Temperature Profile Diagram](image)
6.2 Wave soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5˚C

Time: 10 sec.

Preheat temperature: 25 to 140˚C

Preheat time: 30 to 80 sec.

6.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature: 380+0/-5˚C

Time: 3 sec max.
7. RECOMMENDED FOOT PRINT PATTERNS (MOUNT PAD)

Unit: mm

8. NAMING RULE

CNY17-X(1)-(2)-(3)

DEVICE PART NUMBER
(1)= FORM TYPE (S, M or none)
(2)= TAPING TYPE (TA, TA1 or none)
(3)= VDE Option

9. Notes:

- LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any “specific” application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Immerge unit’s body in solder paste is not recommended.