Photocoupler
Product Data Sheet
4N25/ 4N26
(M, S, S-TA1)
Spec No.: DS-70-99-0010
Effective Date: 12/11/2015
Revision: C
1. DESCRIPTION

1.1 Features

- High Current transfer ratio (CTR : MIN. 10% at IF = 10mA, VCE = 10V)
- Response time(ton : TYP. 3μs at VCC = 10V, IC = 2mA, RL = 100Ω)
- Input-output isolation voltage
 - 4N25 series : Viso = 2,500Vrms
 - 4N26 series : Viso = 1,500Vrms
 - 4N27 series : Viso = 1,500Vrms
 - 4N28 series : Viso = 500Vrms
- Dual-in-line package:
 - 4N25, 4N26, 4N27, 4N28
- Wide lead spacing package:
 - 4N25M, 4N26M, 4N27M, 4N28M
- Surface mounting package:
 - 4N25S, 4N26S, 4N27S, 4N28S
- Tape and reel packaging:
 - 4N25S-TA1, 4N26S-TA1, 4N27S-TA1, 4N28S-TA1
- Safety approval
 - UL approval (NO. E113898)
 - TUV approval (NO. R9653630)
 - DEMKO approval (NO. 303985)
 - CSA & cUL, VDE, FIMKO, CQC approved
- RoHS Compliance
 - All materials be used in device are followed EU RoHS directive (No.2002/95/EC).
- ESD pass HBM 8000V/MM2000V
- MSL class 1

1.2 Applications

- Hybrid substrates that require high density mounting.
- Programmable controllers
2. PACKAGE DIMENSIONS

2.1 4N25

2.3 4N25S

2.2 4N25M

Notes:
1. Year date code.
2. 2-digit work week.
3. Factory identification mark shall be marked (W: China-CZ, Y: Thailand)
4. VDE option.

Dimensions in millimeters (inches).
Data Sheet
Photocoupler
4N2X Series

2.4 4N26

2.5 4N26M

2.6 4N26S

Notes:
1. Year date code.
2. 2-digit work week.
3. Factory identification mark shall be marked
 (W: China-CZ, Y: Thailand)
4. VDE option.

Dimensions in millimeters(inches).
Notes:
1. Year date code.
2. 2-digit work week.
3. Factory identification mark shall be marked (W: China-CZ, Y: Thailand)
4. VDE option.

Dimensions in millimeters (inches).
Data Sheet

Photocoupler
4N2X Series

Notes:
1. Year date code.
2. 2-digit work week.
3. Factory identification mark shall be marked
 (W: China-CZ, Y: Thailand)
4. VDE option.

Dimensions in millimeters (inches).
3. TAPING DIMENSIONS

3.2 4N25S-TA1, 4N26S-TA1, 4N27S-TA1, 4N28S-TA1

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Dimension in mm (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape wide</td>
<td>W</td>
<td>16±0.3 (0.63)</td>
</tr>
<tr>
<td>Pitch of sprocket holes</td>
<td>P₀</td>
<td>4±0.1 (0.15)</td>
</tr>
<tr>
<td>Distance of compartment</td>
<td>F</td>
<td>7.5±0.1 (0.295)</td>
</tr>
<tr>
<td>Distance of compartment to compartment</td>
<td>P₁</td>
<td>12±0.1 (0.472)</td>
</tr>
<tr>
<td>Distance of compartment to compartment</td>
<td>P₂</td>
<td>2±0.1 (0.079)</td>
</tr>
</tbody>
</table>

3.3 Quantities Per Reel

<table>
<thead>
<tr>
<th>Package Type</th>
<th>TA/TA1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantities (pcs)</td>
<td>1000</td>
</tr>
</tbody>
</table>
4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings at Ta=25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Forward Current</td>
<td>I_F</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Reverse Voltage</td>
<td>V_R</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Power Dissipation</td>
<td>P</td>
<td>150</td>
</tr>
<tr>
<td>Output</td>
<td>Collector - Emitter Voltage</td>
<td>V_{CEO}</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Emitter - Collector Voltage</td>
<td>V_{ECO}</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Collector - Base Voltage</td>
<td>V_{CBO}</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Collector Current</td>
<td>I_C</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Collector Power Dissipation</td>
<td>P_C</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Total Power Dissipation</td>
<td>P_{tot}</td>
<td>250</td>
</tr>
</tbody>
</table>

*1 Isolation Voltage

<table>
<thead>
<tr>
<th>Series</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4N25</td>
<td>V_{iso}</td>
<td>2,500</td>
<td>Vrms</td>
</tr>
<tr>
<td>4N26</td>
<td>V_{iso}</td>
<td>1,500</td>
<td>Vrms</td>
</tr>
<tr>
<td>4N27</td>
<td>V_{iso}</td>
<td>1,500</td>
<td>Vrms</td>
</tr>
<tr>
<td>4N28</td>
<td>V_{iso}</td>
<td>500</td>
<td>Vrms</td>
</tr>
</tbody>
</table>

Operating Temperature

- T_{opr}: -55 ~ +100 °C

Storage Temperature

- T_{stg}: -55 ~ +150 °C

*2 Soldering Temperature

- T_{sol}: 260 °C

*1. AC For 1 Minute, R.H. = 40 ~ 60%

Isolation voltage shall be measured using the following method.

1. Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
2. The isolation voltage tester with zero-cross circuit shall be used.
3. The waveform of applied voltage shall be a sine wave.

*2. For 10 Seconds
4.2 Electrical Optical Characteristics at Ta=25°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Voltage</td>
<td>V_F</td>
<td>—</td>
<td>1.2</td>
<td>1.5</td>
<td>V</td>
<td>$I_F=10mA$</td>
</tr>
<tr>
<td>Reverse Current</td>
<td>I_R</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>μA</td>
<td>$V_R=4V$</td>
</tr>
<tr>
<td>Terminal Capacitance</td>
<td>C_t</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>pF</td>
<td>$V=0$, $f=1kHz$</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector Dark Current</td>
<td>I_{CEO}</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>nA</td>
<td>$V_{CE}=10V$, $I_c=0$</td>
</tr>
<tr>
<td>Collector-Emitter Breakdown Voltage</td>
<td>BV_{CEO}</td>
<td>30</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$I_c=0.1mA$, $I_f=0$</td>
</tr>
<tr>
<td>Emitter-Collector Breakdown Voltage</td>
<td>BV_{ECO}</td>
<td>7</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$I_e=10μA$, $I_f=0$</td>
</tr>
<tr>
<td>Collector-Base Breakdown Voltage</td>
<td>BV_{CBO}</td>
<td>70</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$I_c=0.1mA$, $I_f=0$</td>
</tr>
<tr>
<td>TRANSFER CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector Current (4N25/4N26)</td>
<td>I_C</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>$I_f=10mA$, $V_{CE}=10V$</td>
</tr>
<tr>
<td>* Current Transfer Ratio (4N25/4N26)</td>
<td>CTR</td>
<td>20</td>
<td>—</td>
<td>—</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Collector Current (4N27/4N28)</td>
<td>I_C</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>$I_f=50mA$, $I_C=2mA$</td>
</tr>
<tr>
<td>* Current Transfer Ratio (4N27/4N28)</td>
<td>CTR</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Collector-Emitter Saturation Voltage</td>
<td>$V_{CE(sat)}$</td>
<td>—</td>
<td>0.1</td>
<td>0.5</td>
<td>V</td>
<td>$I_f=10mA$, $V_{CE}=10V$</td>
</tr>
<tr>
<td>Isolation Resistance</td>
<td>R_{iso}</td>
<td>5×10^{10}</td>
<td>1×10^{11}</td>
<td>—</td>
<td>Ω</td>
<td>DC500V, 40 ~ 60% R.H.</td>
</tr>
<tr>
<td>Floating Capacitance</td>
<td>C_t</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>pF</td>
<td>$V=0$, $f=1MHz$</td>
</tr>
<tr>
<td>Response Time (Rise)</td>
<td>t_r</td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>μs</td>
<td>$V_{CE}=2V$, $I_C=2mA$</td>
</tr>
<tr>
<td>Response Time (Fall)</td>
<td>t_f</td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>μs</td>
<td>$R_L=1000Ω$</td>
</tr>
</tbody>
</table>

* Current Transfer Ratio $CTR = \frac{I_C}{I_F} \times 100\%$
5. CHARACTERISTICS CURVES

Fig. 1 Forward Current vs. Ambient Temperature

Fig. 2 Collector Power Dissipation vs. Ambient Temperature

Fig. 3 Forward Current vs. Forward Voltage

Fig. 4 Current Transfer Ratio vs. Forward Current

Fig. 5 Collector Current vs. Collector-emitter Voltage

Fig. 6 Relative Current Transfer Ratio vs. Ambient Temperature
Fig.7 Collector-emitter Saturation Voltage vs. Ambient Temperature

Ambient temperature T_a (°C)

Collector-emitter saturation voltage $V_{CE(sat)}$ (V)

Fig.8 Collector Dark Current vs. Ambient Temperature

Ambient temperature T_a (°C)

Collector dark current I_{CEO} (A)

Fig.9 Response Time vs. Load Resistance

Load resistance R_L (kΩ)

Response time t_{rd} (μs)

Fig.10 Frequency Response

Frequency f (kHz)

Voltage gain A_v (dB)

Fig.11 Collector-emitter Saturation Voltage vs. Forward Current

Forward current I_F (mA)

Collector-emitter saturation voltage $V_{CE(sat)}$ (V)

Test Circuit for Response Time

Input

Output

Test Circuit for Frequency Response

Input

Output

Part No.: 4N2X series
BNS-OD-FC002/A4
Rev.: C
6. TEMPERATURE PROFILE OF SOLDERING

6.1 IR Reflow Soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

<table>
<thead>
<tr>
<th>Profile item</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preheat</td>
<td></td>
</tr>
<tr>
<td>- Temperature Min (T_{Smin})</td>
<td>150°C</td>
</tr>
<tr>
<td>- Temperature Max (T_{Smax})</td>
<td>200°C</td>
</tr>
<tr>
<td>- Time (min to max) (ts)</td>
<td>90±30 sec</td>
</tr>
<tr>
<td>Soldering zone</td>
<td></td>
</tr>
<tr>
<td>- Temperature (T_L)</td>
<td>217°C</td>
</tr>
<tr>
<td>- Time (t_L)</td>
<td>60 sec</td>
</tr>
<tr>
<td>Peak Temperature (T_P)</td>
<td>260°C</td>
</tr>
<tr>
<td>Ramp-up rate</td>
<td>3°C / sec max.</td>
</tr>
<tr>
<td>Ramp-down rate</td>
<td>3~6°C / sec</td>
</tr>
</tbody>
</table>

![Temperature Profile Diagram](image)
6.2 Wave Soldering (JEDEC22A111 compliant)

One time soldering is recommended within the condition of temperature.
Temperature: 260±0/-5°C
Time: 10 sec.
Preheat temperature: 25 to 140°C
Preheat time: 30 to 80 sec.

6.3 Hand Soldering by Soldering Iron

Allow single lead soldering in every single process. One time soldering is recommended.
Temperature: 380±0/-5°C
Time: 3 sec max.
7. RECOMMENDED FOOT PRINT PATTERNS (MOUNT PAD)

Note:
Dimensions in millimeters.
8. Naming rule

4NXX (1)-(2)

DEVICE PART NUMBER
(1) No suffix = Dual-in-Line package
 M = Wide lead spacing package
 S = Surface mounting package
(2) TAPING TYPE (TA,TA1 or none)
 4NXX series have tape and reel solution.
 Please refer to orientation of taping on Page P6

Example : 4N2S-TA1

4NXX(1)(2)-V

DEVICE PART NUMBER
(1) No suffix = Dual-in-Line package
 M = Wide lead spacing package
 S = Surface mounting package
(2) TAPING TYPE (TA,TA1 or none)
 4NXX series have tape and reel solution.
 Please refer to orientation of taping on Page P6
(3) VDE order option

Example : 4N2STA1-V-G

9. Notes:
- LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any “specific” application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Immerging unit’s body in solder paste is not recommended.