๖

Product Data Sheet
LTSA-E67RVSWT
Spec No.: DS35-2016-0050
Effective Date: 11/22/2016
Revision: -

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

1. Description

SMD LEDs from Lite-On are available in miniature sizes and special configurations for automated PC board assembly and space-sensitive applications. These SMD LEDs are suitable for use a wide variety of electronic equipment, e.g.: cordless and cellular phones, notebook computers and network systems etc..

1.1 Features

- Meet ROHS
- Package in 8 mm tape on 7 " diameter reels
- EIA STD package
- I.C. compatible
- Compatible with automatic placement equipment
- Compatible with infrared reflow solder process
- Preconditioning: accelerate to JEDEC level 3

1.2 Applications

- Aftermarket: accessary applications,

2. Package Dimensions

Part No.	Lens Color	Source Color
LTSA-E67RVSWT	Diffused	AllnGaP Yellow

Notes:

1. All dimensions are in millimeters.
2. Tolerance is $\pm 0.2 \mathrm{~mm}\left(.008^{\prime \prime}\right)$ unless otherwise noted.

SMD LED
 LTSA-E67RVSWT

3. Rating and Characteristics

3.1 Absolute Maximum Ratings at $\mathrm{Ta}=\mathbf{2 5}^{\circ} \mathrm{C}$

Parameter	LTSA-E67RVSWT	Unit
Power Dissipation	185.5	mW
Peak Forward Current		
(1/10 Duty Cycle, 0.1 ms Pulse Width $)$	100	mA
DC Forward Current	70	mA
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	

3.2 Suggest IR Reflow Condition for Pb Free Process:

IR-Reflow Soldering Profile for lead free soldering (Acc. to J-STD-020)

3.3 Electrical / Optical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Part No. LTSA-	Min.	Typ.	Max.	Unit	Test Condition
Luminous Intensity	IV	E67RVSWT	1400	-	3550	mcd	$\begin{gathered} \mathrm{IF}=50 \mathrm{~mA} \\ \text { Note } 1 \end{gathered}$
Viewing Angle	$2 \theta_{1 / 2}$	E67RVSWT	-	120	-	deg	Note 2 (Fig.2)
Peak Emission Wavelength	$\lambda \mathrm{P}$	E67RVSWT	-	592	-	nm	Measurement @Peak (Fig.1)
Dominant Wavelength	λd	E67RVSWT	587	-	597	nm	$\begin{gathered} \mathrm{IF}=50 \mathrm{~mA} \\ \text { Note } 3 \end{gathered}$
Spectral Line Half-Width	$\Delta \lambda$	E67RVSWT	-	15	-	nm	
Forward Voltage	VF	E67RVSWT	1.90	-	2.65	V	$\begin{gathered} \mathrm{IF}=50 \mathrm{~mA} \\ \text { Note } 4 \end{gathered}$
Reverse Current	IR	E67RVSWT	-	-	10	$\mu \mathrm{A}$	$\begin{aligned} & \text { VR }=5 \mathrm{~V} \\ & \text { Note } 5 \end{aligned}$

Notes:

1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve
2. $\theta 1 / 2$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
3. The dominant wavelength, $\lambda \mathrm{d}$ is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. Dominate Wavelength Tolerance is $+/-1 \mathrm{~nm}$. '
4. Forward Voltage Tolerance is $+/-0.1$ volt.
5. Reverse voltage (VR) condition is applied to IR test only. The device is not designed for reverse operation

4. Bin Rank
 Batch Description on Label: Vf / Iv / Wd (Ex. D/X1/AK)

■ Vf Rank

Forward Voltage (Vf)		Unit : V @50mA
Bin Code	Min.	Max.
C	1.90	2.05
D	2.05	2.20
E	2.20	2.35
F	2.35	2.50
G	2.50	2.65

Tolerance on each Forward Voltage bin is $+/-0.1$ volt

■ IV Rank

Luminous Intensity (Iv)		Unit : mad @50mA
Bin Code	Min.	Max.
W2	1400	1800
X1	1800	2240
X2	2240	2800
Y1	2800	3550

Tolerance on each Intensity bin is +/-11\%

- Wd Rank

Dominant Wavelength		Unit : nm @50mA
Bin Code	Min.	Max.
AJ	587.0	589.5
AK	589.5	592.0
AL	592.0	594.5
AM	594.5	597.0

Tolerance for each Dominate Wavelength bin is $+/-1 \mathrm{~nm}$

SMD LED
 LTSA-E67RVSWT

5. Typical Electrical / Optical Characteristics Curves.

$\left(25^{\circ} \mathrm{C}\right.$ Ambient Temperature Unless Otherwise Noted)

Fig. 1 Relative Intensity vs. Wavelength

Fig. 2 SPATIAL DISTRIBUTION

Fig. 4 RELATIVE LUMINOUS INTENSITY V.S. FORWARD CURRENT

Forward Current (mA)
Fig. 3 FORWARD VOLTAGE V.S. FORWARD CURRENT

Fig. 5 FORWARD CURRENT DERATING CURVE

6. User Guide

6.1 Cleaning

Do not use unspecified chemical liquid to clean LED they could harm the package. If cleaning is necessary, immerse the LED in ethyl alcohol or isopropyl alcohol at normal temperature for less one minute.

6.2 Recommend Printed Circuit Board Attachment Pad

Infrared / vapor phase

Reflow Soldering

- ANODE for the other three pads

6.3 Package Dimensions of Tape And Reel

Note:

1. All dimensions are in millimeters (inches).

6.4 Package Dimensions of Reel

Notes:

1. Empty component pockets sealed with top cover tape.
2. 7 inch reel 2000 pieces per reel.
3. The maximum number of consecutive missing lamps is two.
4. In accordance with ANSI/EIA 481 specifications.

7. Cautions

7.1 Application

The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications).Consult Liteon's Sales in advance for information on applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices).

7.2 Storage

The package is sealed:
The LEDs should be stored at $30^{\circ} \mathrm{C}$ or less and 70% RH or less. And the LEDs are limited to use within one year, while the LEDs is packed in moisture-proof package with the desiccants inside.
The package is opened:
The storage ambient for the LEDs should not exceed $30^{\circ} \mathrm{C}$ temperature and 60% relative humidity.
It is recommended that LEDs out of their original packaging are IR-reflowed within 168hrs.
For extended storage out of their original packaging, it is recommended that the LEDs be stored in a sealed container with appropriate desiccant, or in a desiccators with nitrogen ambient.
LEDs stored out of their original packaging for more than 168 hrs should be baked at about $60^{\circ} \mathrm{C}$ for at least 48 hours before solder assembly.

7.3 Cleaning

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED if necessary.

7.4 Soldering

Recommended soldering conditions:

Reflow soldering		Soldering iron	
Pre-heat	$150 \sim 200^{\circ} \mathrm{C}$	Temperature	$300^{\circ} \mathrm{C} \mathrm{Max}$.
Pre-heat time	120 sec. Max.	Soldering time	3 sec. Max.
Peak temperature	$260^{\circ} \mathrm{C}$ Max.		
Soldering time	10 sec. Max.(Max. two times)		(one time only)

Notes:

Because different board designs use different number and types of devices, solder pastes, reflow ovens, and circuit boards, no single temperature profile works for all possible combinations.
However, you can successfully mount your packages to the PCB by following the proper guidelines and PCB-specific characterization.
LITE-ON Runs both component-level verification using in-house KYRAMX98 reflow chambers and board-level assembly. The results of this testing are verified through post-reflow reliability testing.Profiles used at LITE-ON are based on JEDEC standards to ensure that all packages can be successfully and reliably surface mounted.
Figure on page3 shows a sample temperature profile compliant to JEDEC standards. You can use this example as a generic target to set up your reflow process. You should adhere to the JEDEC profile limits as well as specifications and recommendations from the solder paste manufacturer to avoid damaging the device and create a reliable solder joint.

7.5 Drive Method

A LED is a current-operated device. In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application, it is recommended that a current limiting resistor be incorporated in the drive circuit, in series with each LED as shown in Circuit A below.

Circuit model A

Circuit model B

(A) Recommended circuit.
(B) The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs.

7.6 ESD (Electrostatic Discharge)

Static Electricity or power surge will damage the LED.
Suggestions to prevent ESD damage:

- Use of a conductive wrist band or anti-electrostatic glove when handling these LEDs.
- All devices, equipment, and machinery must be properly grounded.
- Work tables, storage racks, etc. should be properly grounded.

■ Use ion blower to neutralize the static charge which might have built up on surface of the LED's plastic lens as a result of friction between LEDs during storage and handling.

ESD-damaged LEDs will exhibit abnormal characteristics such as high reverse leakage current, low forward voltage, or " no lightup " at low currents.
To verify for ESD damage, check for " lightup " and Vf of the suspect LEDs at low currents.
The Vf of " good " LEDs should be $>2.0 \mathrm{~V} @ 0.1 \mathrm{~mA}$ for InGaN product and $>1.4 \mathrm{~V} @ 0.1 \mathrm{~mA}$ for AllnGaP product.

8. Reliability Test

No.	Test item	Test condition	Sample size	Reference standard
1	Pre-conditioning	MSL 3 $125^{\circ} \mathrm{C}, 24$ hrs baking Moisture Soak $60^{\circ} \mathrm{C} / 60 \% 52$ hrs Interval: 15 mins ~ 4 hours to do IR-Reflow	240	JESD22 A-113
2	High Temperature Operating Life I	$\mathrm{IF}=70 \mathrm{~mA}, \mathrm{Ta}=55^{\circ} \mathrm{C}, 1000 \mathrm{hrs}$	30	$\begin{gathered} \text { EIAJ ED-4701/100 } \\ (101) \end{gathered}$
3	High Temperature Operating Life II	$\mathrm{Ta}=100^{\circ} \mathrm{C} ., \mathrm{IF}=25 \mathrm{~mA}, 1000 \mathrm{hrs}$	30	$\begin{gathered} \text { EIAJ ED-4701/100 } \\ (101) \end{gathered}$
4	Low Temperature Operating Life	$\mathrm{Ta}=-40^{\circ} \mathrm{C}, \mathrm{IF}=70 \mathrm{~mA}, 1000 \mathrm{hrs}$	30	$\begin{gathered} \text { EIAJ ED-4701/100 } \\ (101) \end{gathered}$
5	High Temperature Storage	$\mathrm{Ta}=100^{\circ} \mathrm{C}, 1000 \mathrm{hrs}$	30	$\begin{gathered} \text { EIAJ ED-4701/200 } \\ (201) \end{gathered}$
6	Low Temperature Storage	$\mathrm{Ta}=-40^{\circ} \mathrm{C} ., 1000 \mathrm{hrs}$	30	$\begin{gathered} \text { EIAJ ED-4701/200 } \\ (202) \end{gathered}$
7	High Temperature High Humidity Bias (HTHHB)	$\begin{aligned} & \mathrm{Ta}=60^{\circ} \mathrm{C}, \mathrm{Rh}=90 \%, \mathrm{IF}=65 \mathrm{~mA}, \\ & 1000 \mathrm{hrs} \end{aligned}$	30	$\begin{gathered} \text { EIAJ ED-4701/100 } \\ (102) \end{gathered}$
8	Thermal Shock (air to air)	$-40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ $\sim 100 \pm 5^{\circ} \mathrm{C}$ 30 min 30 min 300 cycles	30	$\begin{gathered} \text { EIAJ ED-4701/300 } \\ (307) \end{gathered}$
9	Temperature Cycle	$-40^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C}$ $30 \mathrm{~min} 5 \mathrm{~min} \quad 30 \mathrm{~min} 5 \mathrm{~min}$ 300cycles	30	$\begin{gathered} \text { EIAJ ED-4701/100 } \\ (105) \end{gathered}$
10	Resistance to soldering heat	Tsld $=260^{\circ} \mathrm{C}$, 10sec. 3 times	30	$\begin{aligned} & \text { EIAJ ED- } \\ & 4701 / 300 \\ & (301 \& 302) \end{aligned}$
11	Solderability	Tsld=245 $\pm 5^{\circ} \mathrm{C}, 5 \mathrm{secs}$	30	$\begin{aligned} & \text { EIAJ ED- } \\ & 4701 / 300 \\ & (303) \end{aligned}$

9. Others

The appearance and specifications of the product may be modified for improvement without prior notice.

10. Suggested Checking List

Training and Certification

1. Everyone working in a static-safe area is ESD-certified?
2. Training records kept and re-certification dates monitored?

Static-Safe Workstation \& Work Areas

1. Static-safe workstation or work-areas have ESD signs?
2. All surfaces and objects at all static-safe workstation and within 1 ft measure less than 100 V ?
3. All ionizer activated, positioned towards the units?
4. Each work surface mats grounding is good?

Personnel Grounding

1. Every person (including visitors) handling ESD sensitive (ESDS) items wears wrist strap, heel strap or conductive shoes with conductive flooring?
2. If conductive footwear used, conductive flooring also present where operator stand or walk?
3. Garments, hairs or anything closer than 1 ft to ESD items measure less than $100 \mathrm{~V}^{*}$?
4. Every wrist strap or heel strap/conductive shoes checked daily and result recorded for all DLs?
5. All wrist strap or heel strap checkers calibration up to date?

Note: *50V for InGaN LED.

Device Handling

1. Every ESDS items identified by EIA-471 labels on item or packaging?
2. All ESDS items completely inside properly closed static-shielding containers when not at static-safe workstation?
3. No static charge generators (e.g. plastics) inside shielding containers with ESDS items?
4. All flexible conductive and dissipative package materials inspected before reuse or recycles?

Others

1. Audit result reported to entity ESD control coordinator?
2. Corrective action from previous audits completed?
3. Are audit records complete and on file?
