

Spec No. :DS86-2017-0024 Effective Date: 11/07/2017 Revision: -

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

LITE-ON Technology Corp. / Optoelectronics No.90,Chien 1 Road, Chung Ho, New Taipei City 23585, Taiwan, R.O.C. Tel: 886-2-2222-6181 Fax: 886-2-2221-1948 / 886-2-2221-0660 http://www.liteon.com/opto

Optical Sensor LTR-676PS-01

1. Description

The LTR-676PS-01 is an integrated low voltage I2C proximity sensor with built-in emitter in a single miniature chipled lead-free surface mount package.

The proximity sensor can detect object at a user configurable distance.

The sensor has a programmable interrupt with hysteresis to response to events and that removes the need to poll the sensor for a reading which improves system efficiency. This CMOS design and factory-set one time trimming capability ensure minimal sensor-to-sensor variations for ease of manufacturability to the end customers.

2. Features

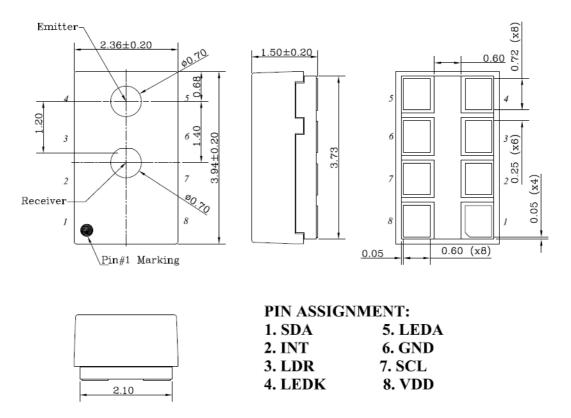
- I²C interface (Standard mode @100kHz or Fast mode @400kHz)
- Proximity Sensor and LED in one ultra-small ChipLED package
- Very low power consumption with sleep mode capability
- Operating voltage ranges: 1.7V to 3.6V
- Operating temperature ranges: -40 to +85 °C
- Built-in temperature compensation circuit
- Programmable interrupt function for PS with upper and lower thresholds
- RoHS and Halogen free compliant

PS Features

- Built-in LED driver and detector
- > High ambient light suppression
- > 8, 9, 10, 11-bit(selectable) effective resolution
- Cancellation of crosstalk
- Programmable LED drive settings

1/32

Optical Sensor LTR-676PS-01


3. Applications

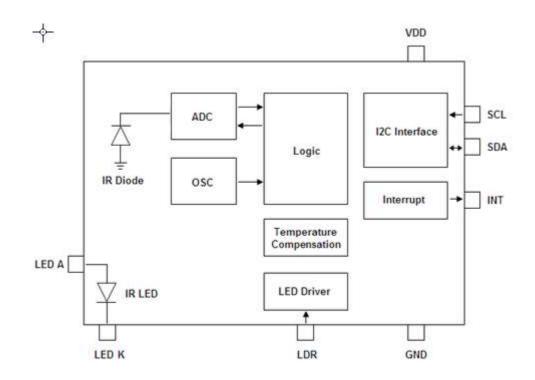
• Object detection in mobile, computing, and consumer devices.

4. Ordering Information

Part Number	Packaging Type	Package	Quantity
LTR-676PS-01	Tape and Reel	8-pin chipled package	8000

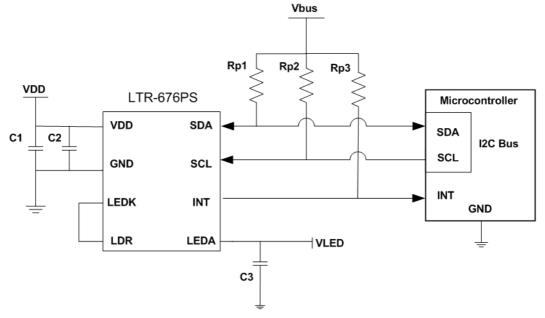
5. Outline Dimensions

Note: All dimension in millimeter, and with tolerance of 0.2mm unless specified.


2/32

Optical Sensor LTR-676PS-01

6. Functional Block Diagram


LTR-676PS-01 contains an IR diode photocurrent measurement. The photodiode current is converted to digital value by ADC. The sensor also included a emitter LED, as well as some peripheral circuits such as an internal oscillator, a current source, voltage reference, and internal fuses to store trimming information.

Optical Sensor LTR-676PS-01

7. Application Circuit

I/O Pins Configuration Table

Pin	I/O Type	Symbol	Description
1	IN/OUT	SDA	I ² C serial data
2	OUT	INT	Interrupt
3	OUT	LDR	Connect to LED Cathode
4	OUT	LEDK	LED Cathode. Connect to LDR pin if internal LED driver circuit is used
5	IN	LEDA	LED Anode. Connect to VBAT on PCB
6	Ground	GND	Ground
7	IN	SCL	I ² C serial clock
8	Supply	VDD	Power Supply Voltage

Recommended Application Circuit Components

Component	Recommended Value
Rp1, Rp2, Rp3 [1]	1 k Ω to 10 k Ω
C1, C3	1uF ±20%, X7R / X5R Ceramic
C2, C4	0.1uF

[1] Selection of pull-up resistors value is dependent on bus capacitance values. For more details, please refer to I²C Specifications: http://www.nxp.com/documents/user_manual/UM10204.pdf

Optical Sensor LTR-676PS-01

8. Ratings and Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Min.	Мах	Unit
Supply Voltage	VDD		4.0	V
Digital Voltage Range	SCL, SDA, INT	-0.5	4.0	V
Max Voltage Range	LEDK	-0.5	4.0	V
Storage Temperature	T _{stg}	-40	100	°C
Electrostatic Discharge Protection	M		2000	M
(Human Body Model JESD22-A114)	V _{HBM}		2000	v

Note: Exceeding these ratings could cause damage to the sensor. All voltages are with respect to ground. Currents are positive into, negative out of the specified terminal.

Recommended Operating Conditions

Description	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	VDD	1.7		3.6	V
LED Supply Voltage	V _{LED}	2.3		4.5	V
Interface signal input high	$V_{I2Chigh}$	1.5		VDD	V
Interface signal input low	V _{I2Clow}	0		0.4	V
Operating Temperature	T _{ope}	-40		85	°C

Electrical & Optical Specifications

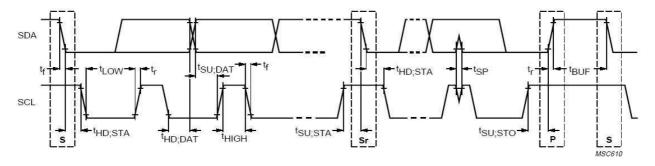
All specifications are at VDD = 2.8V, $T_{ope} = 25^{\circ}C$, unless otherwise noted.

Parameter	Min.	Тур.	Max.	Unit	Condition
PS Active Supply Current		95		uA	Vdd=2.8V
Standby Current		1		uA	Shutdown Mode
Wakeup Time from Standby		F	10	m 0	From Standby to Active mode
wakeup nine nom Standby		5		ms	where measurement can start

Optical Sensor LTR-676PS-01

Characteristics Proximity Sensor

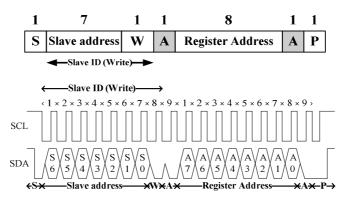
Parameter	Min.	Тур.	Max.	Unit	Condition
PS Resolution	8		11	Bit	
Sensitivity Range		940		nm	
Detection Distance		10		cm	No window, 32 pulses, 60kHz, 100mA, 18% Gray Card
LED Pulse Current	2.5		125	mA	Configurable for 2.5,5,10,25,50,75,100 & 125mA
LED Pulse Frequency	60		100	kHz	
LED Duty Cycle		50		%	
Number Of LED Pulses	1		32	Pulses	
Ambient light suppression			100	klux	Direct sunlight


AC Electrical Characteristics

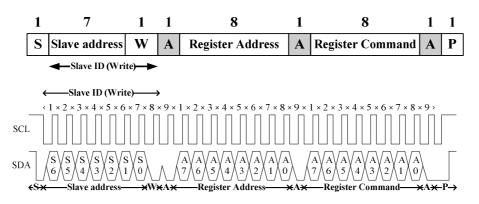
All specifications are at VBus = 1.7V, T_{ope} = 25°C, unless otherwise noted.

Parameter	Symbol	Min.	Max.	Unit
SCL clock frequency	$f_{\it SCL}$	1	400	kHz
Bus free time between a STOP and START condition	t _{BUF}	1.3		us
Hold time (repeated) START condition. After this period, the first clock pulse is generated	$t_{HD;STA}$	0.6		us
LOW period of the SCL clock	t_{LOW}	1.3		us
HIGH period of the SCL clock	t _{HIGH}	0.6		us
Set-up time for a repeated START condition	$t_{SU;STA}$	0.6		us
Set-up time for STOP condition	$t_{SU;STO}$	0.6		us
Rise time of both SDA and SCL signals	t _r	30	300	ns
Fall time of both SDA and SCL signals	t_{f}	30	300	ns
Data hold time	$t_{HD;DAT}$	0.3	0.9	us
Data setup time	t _{SU;DAT}	100		ns
Pulse width of spikes which must be suppressed by the input filter	t _{sp}	0	50	ns

Optical Sensor LTR-676PS-01

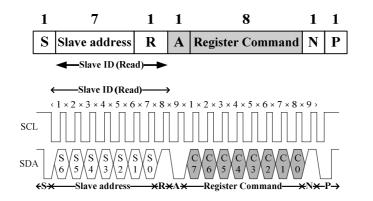


Definition of timing for I²C bus


9. Principles of Operation

I²C Protocols

• I²C Write Protocol (type 1):


• I²C Write Protocol (type 2):

Optical Sensor LTR-676PS-01

· I²C Read Protocol:

· I²C Read (Combined format) Protocol:

Optical Sensor LTR-676PS-01

I2C Slave Address

The 7 bits slave address for this sensor is 0x53H. A read/write bit should be appended to the slave address by the master device to properly communicate with the sensor.

	I ² C Slave Address								
Command	and (0x53H)						W/R		
Туре	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	value
Write	1	0	1	0	0	1	1	0	0xA6H
Read	1	0	1	0	0	1	1	1	0xA7H

Register Set

Addr	R/W	Register Name	Description	Reset Value
0x00	RW	MAIN_CTRL	PS operation mode control, SW reset	0x00
0x01	R/W	PS_LED	PS LED settings	0x36
0x02	R/W	PS_PULSES	PS number of LED pulses	0x08
0x03	R/W	PS_MEAS_RATE	PS measurement rate in active mode	0x45
0x06	R	PART_ID	Part number ID and revision ID	0xB1
0x07	R	MAIN_STATUS	Power-On status, Interrupt status, Data status	0x20
0x08	R	PS_DATA_0	PS measurement data, least significant bits	0x00
0x09	R	PS_DATA_1	PS measurement data, most significant bits, and overflow	0x00
0x19	R/W	INT_CFG	Interrupt configuration	0x10
0x1A	R/W	INT_PST	Interrupt persist setting	0x00
0x1B	R/W	PS_THRES_UP_0	PS interrupt upper threshold, LSB	0xFF
0x1C	R/W	PS_THRES_UP_1	PS interrupt upper threshold, MSB	0x07
0x1D	R/W	PS_THRES_LOW_0	PS interrupt lower threshold, LSB	0x00
0x1E	R/W	PS_THRES_LOW_1	PS interrupt lower threshold, MSB	0x00
0x1F	R/W	PS_CAN_0	PS intelligent cancellation level setting, LSB	0x00
0x20	R/W	PS_CAN_1	PS intelligent cancellation level setting, MSB	0x00

Optical Sensor LTR-676PS-01

MAIN_CTRL Register (0x00) (Read/Write)

This register controls the operation modes of PS, which can be set to either standby or active mode. When writing to this register, it will cause a stop to any ongoing PS measurements and start new measurement.

0x00		MAIN_CTRL (default = 0x00)							
	B7	B6	В5	B4	B3	B2	B1	B0	
	Reserved		Software Reset	Reserved		PS Enable			

Field	Bits	Default	Description			
Reserved	7:5	000				
CW/ Decet	4	0	0	Software reset is NOT triggered (default)		
SW Reset	4	0	0	0	1	Software reset is triggered
Reserved	3:1	000				
PS Enable	e 0 0		0	PS standby(default)		
		1	PS active			

Optical Sensor LTR-676PS-01

PS_LED Register (0x01) (Read/Write)

This register controls the LED driving current, LED turn on acceleration and the LED pulse modulation frequency.

0x01		PS_LED (default = 0x36)									
	B7	B7 B6 B5 B4 B3 B2 B1 B0									
	Reserved	LED Pulse	e Modulation F	Frequency	Reserved		LED Current				

Field	Bits	Default	Descriptio	n
Reserved	7	0	-	-
			000	Reserved
			001	Reserved
			010	Reserved
LED pulse modulation	4:6	011	011	LED pulse period = 60kHz(default)
Frequency	4.0	011	100	LED pulse period = 70kHz
Frequency			101	LED pulse period = 80kHz
			110	LED pulse period = 90kHz
			111	LED pulse period = 100kHz
Reserved	3	0	-	-
			000	LED pulsed current level = 2.5mA
			001	LED pulsed current level = 5.0mA
			010	LED pulsed current level = 10mA
LED current	2:0	110	011	LED pulsed current level = 25mA
LED current	2.0	110	100	LED pulsed current level = 50mA
			101	LED pulsed current level = 75mA
			110	LED pulsed current level = 100mA (default)
			111	LED pulsed current level = 125mA

Optical Sensor LTR-676PS-01

PS_PULSES Register (0x02) (Read/Write)

This register controls number of PS LED pulses emitted. (up to 32 pulses).

0x02	PS_PULSES (default = 0x08)									
	B7	B7 B6 B5 B4 B3 B2 B1 B0								
	Rese	Reserved Number of LED Pulses								

Field	Bits	Default	Description	
Reserved	7:6	00	00	Reserved
			00 0000	0 pulse (no light emission)
	lumber of	00 0001	1 pulse	
Number		00 0010	2 pulses	
Number of				
	5:0	00 1000	00 1000	8 pulses (default)
pulses				
			10 0000	32 pulses
		1X XXXX	Reserved	

Optical Sensor LTR-676PS-01

PS_MEAS_RATE Register (0x03) (Read/Write)

This register controls the timing of the periodic measurements of the PS during active mode. When the measurement rate is programmed to be faster than possible for the programmed ADC measurement, the rate will be lowered than programmed (maximum speed).

0x03	PS_MEAS_RATE (default = 0x45)									
	B7	B7 B6 B5 B4 B3 B2 B1 B0								
	0	1	0		lution/Bit dth	PS M	easurement	Rate		

Field	Bits	Default	Descriptio	n
Reserved	7:5	010	Must write	010
DC	PS	00	8 bit(default)	
Resolution/Bit	4:3	00	01	9 bit
Width	11 4.0	00	10	10 bit
vvidtn			11	11 bit
			000	Reserved
			001	6.25ms
PS			010	12.5ms
	2:0	101	011	25 ms
Measurement Rate	2.0	101	100	50ms
Nale			101	100ms(default)
			110	200ms
			111	400ms

Optical Sensor LTR-676PS-01

PART_ID Register (0x06) (Read Only)

This register defines the part number and revision identification of the sensor.

0x06		PART_ID (default = 0xB1)									
	B7	B7 B6 B5 B4 B3 B2 B1 B0									
		Part Nu	mber ID			Revis	ion ID				

Field	Bits	Default	Description
Part Number ID	7:4	1011	Part Number ID
Revision ID	3:0	0001	Revision ID

14/32

Optical Sensor LTR-676PS-01

MAIN_STATUS Register (0x07) (Read Only)

This register stores the information about PS interrupt and data status. The interrupt status in Bit 1 determines if the PS interrupt criteria is met in Normal Interrupt Mode. It triggers when the PS data is above the upper or below the lower threshold for a specified number of consecutive measurements in respective interrupt persist settings. This register also provides PS logic signal status, which is used for indicating whether the detected object is near (PS data larger than PS upper threshold settings) or far (PS data smaller than PS lower threshold settings).

0x07	MAIN_STATUS (default = 0x20)									
	B7	B6	В5	B4	В3	B2	B1	В0		
	Rese	erved	Power ON Status	Res	erved	PS Logic Signal Status	PS Interrupt Status	PS Data Status		

Field	Bits	Default	Descriptio	n			
Reserved	7:6	00					
Power On Status	5	0	0	Power on event and All interrupt threshold settings in the registers have been rest to power on default states (either due to part turned on or power supply voltage glitch). Flag is cleared after read.			
Reserved	4:3	00					
PS Logic		0		Object is far (default)			
Signal Status	2	0	1	Object is near			
PS	4		0	Interrupt is NOT triggered (default)			
Interrupt Status	1	0	1	Interrupt is triggered and will be cleared after read			
PS Data			0	PS data is old data (Data has been read)			
Status	0	0	1	PS data is new data (Data has not been read and will be cleared after read)			

Optical Sensor LTR-676PS-01

PS_DATA Register (0x08 / 0x09) (Read Only)

The PS ADC channel data are expressed as an 11-bit data spread over 2 registers. The PS_DATA_0 and PS_DATA_1 registers provide the lower and upper byte respectively. An overflow bit is available to check if the PS data overflows. When I2C read operation is active and points to any of the register address between 0x07 and 0x18, both registers PS_DATA_0 and PS_DATA_1 will be locked until the I2C read operation has been completed or the specified address range is left. New measurement data is stored into temporary registers and the PS_DATA registers will be updated as soon as there is no on-going I2C read operation to the address range 0x07 to 0x18.

0x08	PS_DATA_0 (default = 0x00)									
	B7	B7 B6 B5 B4 B3 B2 B1 B0								
				PS Da	ta Low					

0x09	PS_DATA_1 (default = 0x00)									
	B7	B7 B6 B5 B4 B3 B2 B1 B0								
		Rese	erved		Overflow		PS Data Higi	h		

Field	Address	Bits	Default	Descrip	tion
PS Data, Low	0x08	7:0	00000000		PS ADC lower byte data
Reserved	0x09	7:4	000		
Overflow	"		0	0	Valid PS data (default)
Overnow	0x09	3	0	1	Overflow of PS data
PS Data,	0x09	2:0	000		PS ADC upper byte data
High	0,09	2.0	000		

Optical Sensor LTR-676PS-01

INT_CFG Register (0x19) (Read/Write)

This register controls the operation of the interrupt pin and functions. PS interrupt is enabled by Bit 0 and it is threshold triggered based. The interrupt pin can be selected as either Normal Interrupt Mode or PS Logic Output Mode through Bit 1. Under Normal Interrupt Mode, the edge-triggered interrupt signal output will be maintains at active level until MAIN_STATUS register is read. While for PS Logic Output Mode, the interrupt pin output is updated after every measurement and output state is maintained between measurements.

0x19	INT_CFG (default = 0x10)										
	B7	B7 B6 B5 B4 B3 B2 B1 B0									
			PS	PS INT							
		Reserved OUTPUT PIN									
							MODE	ENABLE			

Field	Bits	Default	Descrip	tion
Reserved	7:2	000000		
PS OUTPUT MODE	1	0	0	Normal Interrupt Mode: After interrupt event, INT output pin maintains active level until MAIN_STATUS register is read (default) PS Logic Output Mode: INT output pin is updated after every
PS Interrupt	0	0	0	measurement and maintains output state between measurements. PS interrupt enabled (default)
Pin Enable	0	U	1	PS interrupt enabled

17/32

Optical Sensor LTR-676PS-01

INT_PST Register (0x1A) (Read/Write)

This register controls the N number of times the measurement data is outside the range defined by the upper and lower threshold limits before asserting the interrupt.

0x1A		INT_PST (default = 0x00)										
	B7	B7 B6 B5 B4 B3 B2 B1 B0										
		Rese	rved		PS Persist							

Field	Bits	Default		Description
Reserved	7:4	0000		
PS Persist	3:0	0000	0000	Every PS value out of threshold range asserts an interrupt (default) 2 consecutive PS values out of threshold range assert an interrupt
			1111	16 consecutive PS values out of threshold range assert an interrupt

Optical Sensor LTR-676PS-01

PS_THRES Register (0x1B / 0x1C / 0x1D / 0x1E) (Read/Write)

The PS_THRES_UP and PS_THRES_LOW registers determines the upper and lower limit of the interrupt threshold value respectively. Interrupt will be triggered if measurement data in PS_DATA registers is exceeding the upper and lower limits.

0x1B		PS_THRES_UP_0 (default = 0xFF)										
	B7	B7 B6 B5 B4 B3 B2 B1 B0										
				PS Upper Th	reshold, Lov	V						

0x1C		PS_THRES_UP_1 (default = 0x07)										
	B7	B7 B6 B5 B4 B3 B2 B1 B0										
			Reserved			PS Up	per Threshol	d, High				

0x1D		PS_THRES_LOW_0 (default = 0x00)										
	B7	B7 B6 B5 B4 B3 B2 B1 B0										
		PS Lower Threshold, Low										

0x1E		PS_THRES_LOW_1 (default = 0x00)										
	B7	B7 B6 B5 B4 B3 B2 B1 B0										
			Reserved			PS Lov	ver Threshol	d, High				

Field	Address	Bits	Default	Description
PS Upper Threshold, Low	0x1B	7:0	11111111	PS Upper Interrupt Threshold, Low byte
Reserved	0x1C	7:3	00000	
PS Upper Threshold, High	0x1C	2:0	111	PS Upper Interrupt Threshold, High byte
PS Lower Threshold, Low	0x1D	7:0	00000000	PS Lower Interrupt Threshold, Low byte
Reserved	0x1E	7:3	00000	
PS Lower Threshold, High	0x1E	2:0	000	PS Lower Interrupt Threshold, High byte

Optical Sensor LTR-676PS-01

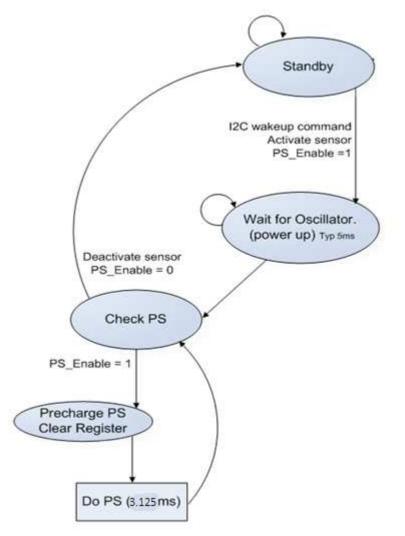
PS_CAN Register (0x1F / 0x20) (Read/Write)

This register defines the offset compensation value for proximity offsets caused by device variations, optical crosstalk and other environment factors. This register sets the PS cancellation value to be subtracted from the measured PS data before the data is transferred to the PS_DATA registers.

0x1F	PS_CAN_0 (default = 0x00)										
	B7	B7 B6 B5 B4 B3 B2 B1 B0									
			ŀ	PS Cancellati	on Level, Lo	w					

0x20	PS_CAN_1 (default = 0x00)										
	B7	B7 B6 B5 B4 B3 B2 B1 B0									
			Reserved			PS Can	cellation Lev	vel, High			

Field	Address	Bits	Default	Description
PS Cancellation Level, Low	0x1F	7:0	0000000	PS Cancellation Level, Low byte
Reserved	0x20	7:3	00000	
PS Cancellation Level, High	0x20	2:0	000	PS Cancellation Level, High byte



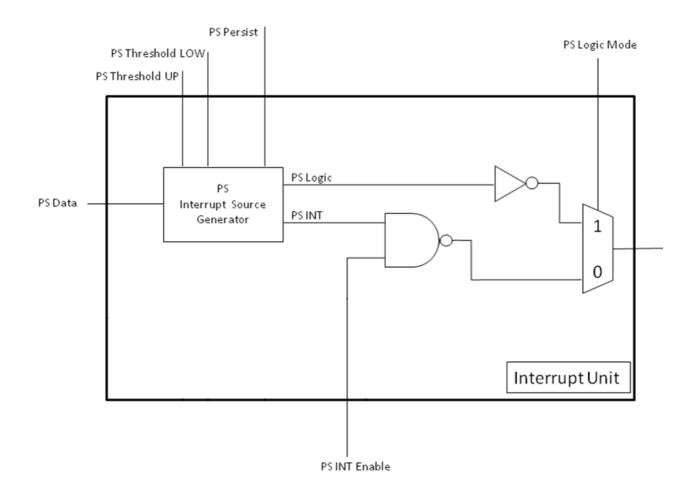
Optical Sensor LTR-676PS-01

10. Device Operation (State Machine and Interrupt Features)

State Machine

Below diagram is the main state machine of LTR-676PS.

PS measurement can be activated by setting the PS_Enable bit to 1. As soon as the PS sensors become activated through an I2C command, the internal support blocks are powered on. Once the voltages and currents are settled (typically after 5ms), the state machine checks for trigger events from a measurement scheduler to start PS conversions according to the selected measurement repeat rates. Once PS_Enable is changed back to 0, a running conversion on the respective channel will be completed and the relevant ADCs and support blocks will move to power-down state.



Optical Sensor LTR-676PS-01

Interrupt Features

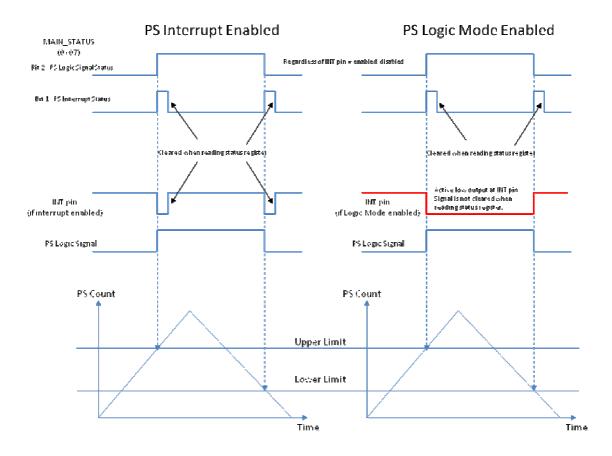
This device generates PS interrupt signals is output to the INT output pin. The interrupt conditions are always evaluated after completion of a new conversion of the PS channel. PS interrupts are active low at the INT pin.

Optical Sensor LTR-676PS-01

PS Interrupt

ITEON[®]

OPTOELECTRONICS


The PS interrupt is enabled by Bit 0 (PS Interrupt Pin Enable). It triggers when the PS conversion result is above the upper or below PS threshold for a specified number of consecutive measurements set in PS Persist in INT_PST register (0x1A).

The PS Logic Signal, Bit 2 of MAIN_STATUS register (0x07), is set to 0 when the PS data is below the lower PS threshold and it set to 1 if the PS data is above the upper PS threshold.

There are two options to indicate a PS interrupt signal on the INT pin: as a continuous logic signal or as an edge-triggered interrupt signal, which is cleared with the next read-out of the MAIN-STATUS register.

The PS interrupt signal is also stored in MAIN_STATUS register (0x07) as flag bit in Bit 1 (PS INT Status). This status flag bit is cleared by reading the MAIN_STATUS register.

The PS interrupt behavior is as shown below.

23/32

Optical Sensor LTR-676PS-01

11. Pseudo Codes Examples

Slave address

Slave_Addr = 0xA6

MAIN_CTRL Register

// This defines the operating modes of the PS // Default settings is 0x00 (PS standby)

Register_Addr = 0x00Command = 0x01

// MAIN_CTRL register

//

PS in Active Mode,

WriteByte(Slave_Addr, Register_Addr, Command);

PS_LED Register

// This defines the LED pulse modulation frequency and Peak current. // Default setting is 0x36 (Pulse Freq = 60kHz, peak current = 100mA).

Register_Addr = 0x01	// PS_LED register	
Command = $0x36$	//	Pulse Freq = 60kHz, Peak Current =100mA
	// Command = 0x46	Pulse Freq = 70kHz, Peak Current =100mA
	// Command = 0x44	Pulse Freq = 70kHz, Peak Current = 50mA
	// Command = 0x76	Pulse Freq = 100kHz, Peak Current = 100mA
	// Command = 0x77	Pulse Freq = 100kHz, Peak Current = 125mA
WriteBute(Slave Addr Pegister Addr Co	mmand)	

WriteByte(Slave_Addr, Register_Addr, Command)

PS_PULSES Register

// This controls the number of PS LED pulses emitted (Up to 32 pulses) // Default setting of the register is 0x08 (8 Pulses)

Register_Addr = 0x02	// PS_PULSES register	
Command = 0x08	//	8 pulses
	// Command = 0x00	0 (no light)
	// Command = 0x04	4 pulses
	// Command = 0x20	32 pulses
WriteByte(Slave Addr Register Addr Comm	hand)	-

WriteByte(Slave_Addr, Register_Addr, Command)

PS_MEAS_RATE Register

//This controls the PS Resolution and measurement rate. // Default setting of the register is 0x45 (PS Resolution = 8 bit, Measurement Rate = 100ms)

Register_Addr = 0x03	// PS_MEAS_RATE register		
Command = 0x45	//	Resolution = 8 bit, Meas Rate = 100ms	
	// Command = 0x47	Resolution = 8 bit Meas Rate = 400ms	
	// Command = 0x5D	Resolution = 11 bit Meas Rate = 100ms	
WriteByte(Slave_Addr, Register_Addr, Command)			

MAIN_STATUS Register (Read Only)

24/32

Optical Sensor I TR-676PS-01

// This Register contains the information on Interrupt, PS data status.

Register_Addr = 0x07 // MAIN_STATUS register address Data = ReadByte(Slave Addr, Register Addr) Power_ON_Status = Data & 0x20 // If 0x20 Part went through power-up event // If 0x00 Normal

PS_Logic_Signal_Status = Data & 0x04

PS_Interrupt_Status = Data & 0x02

PS_Data_Status = Data & 0x01

// If 0x04 Object is near // If 0x00 Object is far // If 0x02 Interrupt triggered // If 0x00 Interrupt condition not fulfilled // If 0x01 PS data is new // If 0x00 Old (previously read) Data

// PS_DATA1 high byte address

PS_DATA Registers (Read Only)

//The register 0x08 contains PS ADC lower byte data. //The register 0x09 contains PS ADC 3 bits of upper byte data and PS Overflow flag //These registers should be read as a group, with the lower address being read first.

Register_Addr = 0x08// PS_DATA0 low byte address Data0=ReadByte(Slave_Addr, Register_Addr) // Data= PS ADC lower byte data

Register_Addr = 0x09Data=ReadByte(Slave_Addr, Register_Addr) // Data= PS ADC high byte data Data1=Data&0x03

PS_ADC_Data = (Data1 << 8) | Data0 Overflow_status = Data & 0x08

// Mask with 0x03 to extract data // Shift and combine lower and upper bytes to give 11-bit PS data // If 0x08 PS Data is overflow // If 0x00 PS Data is valid

INT CFG Register

//This register controls the operation of the interrupt pins and options to trigger interrupt for PS. //The default value for this INT_CFG register is 0x10 (Interrupts inactive PS)

Register_Addr = 0x19	<pre>// INT_CFG Register add</pre>	Iress	
Command = 0x01	// Normal trigger mode; PS Interrupt Enable		
	// Command = 0x03	PS Logic Output Mode; PS Interrupt Enable	

WriteByte(Slave_Addr, Register_Addr, Command)

INTERRUPT_PERSIST Register

// This register sets the PS persist level. // The default setting is 0x00. Interrupt at every PS reading outside set thresholds.

Register_Addr = 0x1A// INT_PST register // Interrupt for every PS value outside threshold Command = 0x00// Command =0x01 Subsequent 2 PS values, outside threshold range // Command =0x05 Subsequent 6 PS values, outside threshold range

WriteByte(Slave_Addr, Register_Addr, Command)

25/32

Optical Sensor LTR-676PS-01

PS_THRES Registers

// The register 0x1B contains PS Interrupt upper threshold lower byte data (PS_THRES_UP_0)
// The register 0x1C contains PS Interrupt upper threshold upper byte data (PS_THRES_UP_1)
// The register 0x1D contains PS Interrupt lower threshold lower byte data (PS_THRES_LOW_0)
// The register 0x1E contains PS Interrupt lower threshold upper byte data (PS_THRES_LOW_0)

// To set PS Upper threshold for Interrupt
Upper_Threshold_Value=1000
Data1 = Upper_Threshold_Value >> 8
Data0 = Upper_Threshold_Value & 0xFF
Register_Addr = 0x1B
WriteByte(Slave_Addr, Register_Addr, Data0)
Register_Addr = 0x1C
WriteByte(Slave_Addr, Register_Addr, Data1)

// To set PS Lower threshold for Interrupt Lower_Threshold_Value=100 Data1 = Lower_Threshold_Value >> 8 Data0 =Lower_Threshold_Value & 0xFF Register_Addr = 0x1D WriteByte(Slave_Addr, Register_Addr, Data0) Register_Addr = 0x1E WriteByte(Slave_Addr, Register_Addr, Data1) // Example 1000
// Shift right to extract the upper byte
// Mask to extract lower byte.
// PS_THRES_UP_0 Register address

// PS_THRES_UP_1 Register address

// Example 100
// Shift right to extract the upper byte
// Mask to extract lower byte.
// PS_THRES_LOW_0 Register address

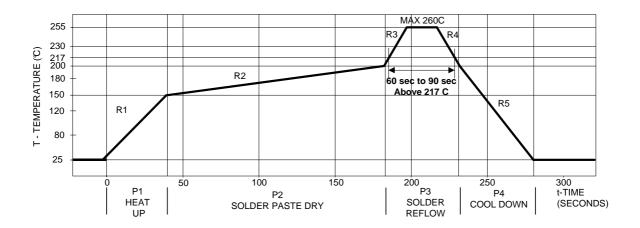
// PS_THRES_LOW_1 Register address

PS_CAN Registers

//The register 0x1F contains PS cancellation lower byte data (PS_CAN_0) //The register 0x20 contains 3 bits of PS cancellation upper byte data (PS_CAN_1)

//To set PS Cancellation Value (0 to 2047)PS_Cancel_Value=100Data1 = PS_Cancel_Value >> 8Data0 = PS_Cancel_Value & 0xFF// MRegister_Addr = 0x1F// WriteByte(Slave_Addr, Register_Addr, Data0)Register_Addr = 0x20// PSWriteByte(Slave_Addr, Register_Addr, Data1)

// Example 100
// Shift right to extract the upper byte
// Mask to extract lower byte.
// PS_CAN_0 Register address
// PS_CAN_4 Desister address


// PS_CAN_1 Register address

Optical Sensor LTR-676PS-01

12. Recommended Leadfree Reflow Profile

Process Zone	Symbol	ΔΤ	Maximum ∆T/∆time or Duration	
Heat Up P1, R1		25°C to 150°C	3°C/s	
Solder Paste Dry P2, R2		150°C to 200°C	100s to 180s	
Solder Reflow	P3, R3	200°C to 260°C	3°C/s	
Solder Kellow	P3, R4	260°C to 200°C -6°C/s		
Cool Down	P4, R5	200°C to 25°C	-6°C/s	
Time maintained above liquidus point , 217°C		> 217°C	60s to 90s	
Peak Temperature		260°C	-	
Time within 5°C of actual Peak Temperature		> 255°C	20s	
Time 25°C to Peak Temperature		25°C to 260°C	8mins	

It is recommended to perform reflow soldering no more than twice.

27/32

Optical Sensor LTR-676PS-01

13. Moisture Proof Packaging

All LTR-676PS-01 are shipped in moisture proof package. Once opened, moisture absorption begins. This part is compliant to JEDEC J-STD-033A Level 3.

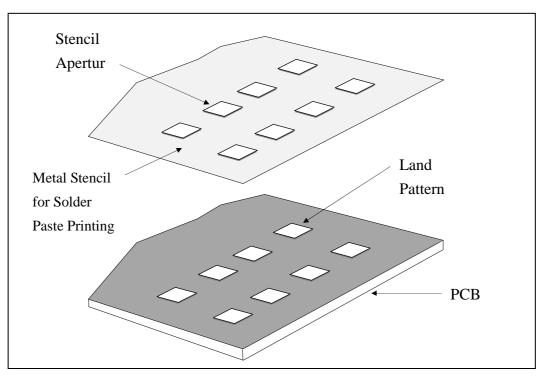
Time from Unsealing to Soldering

After removal from the moisture barrier bag, the parts should be stored at the recommended storage conditions and soldered within seven days. When the moisture barrier bag is opened and the parts are exposed to the recommended storage conditions for more than seven days, the parts must be baked before reflow to prevent damage to the parts.

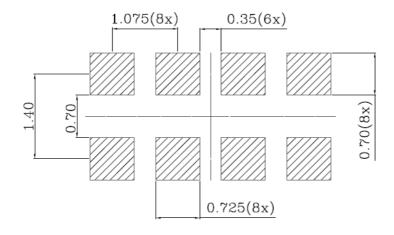
Recommended Storage Conditions

Storage Temperature	10°C to 30°C
Relative Humidity	Below 60% RH

Baking Conditions


Package	Temperature	Time	
In Reels	60°C	48 hours	
In Bulk	100°C	4 hours	

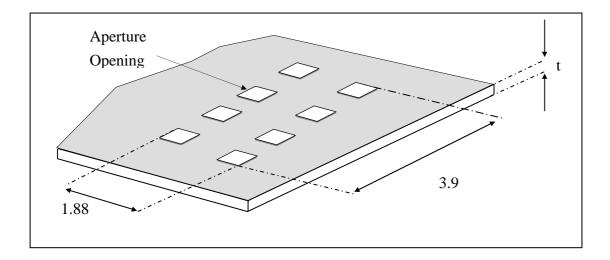
Baking should only be done once.



14. Recommended Land Pattern and Metal Stencil Aperture

Recommended Land Pattern

Note: All dimensions are in millimeters

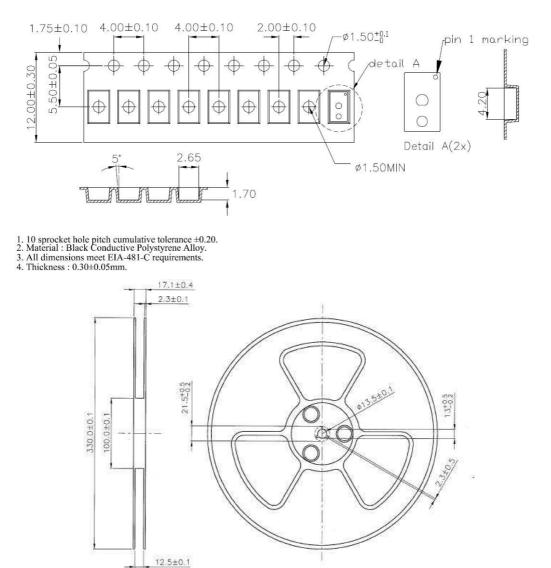


Optical Sensor LTR-676PS-01

Recommended Metal Stencil Aperture

It is recommended that the metal stencil used for solder paste printing has a thickness (t) of 0.11mm (0.004 inches / 4 mils) or 0.127mm (0.005 inches / 5 mils).

The stencil aperture opening is recommended to be 0.675mm x 0.48mm which has the same dimension as the solder pad. This is to ensure adequate printed solder paste volume and yet no shorting.



Optical Sensor LTR-676PS-01

15. Package Dimension for Tape and Reel

Notes:

- 1. All dimensions are in millimeters
- 2. Empty component pockets sealed with top cover tape
- 3. 13 inch reel 8000 pieces per reel
- 4. In accordance with ANSI/EIA 481-1-A-1994 specifications

31/32

Optical Sensor LTR-676PS-01

Revision Table:

Version	Update	Page	Date
1.0	Datasheet as created	Total 32	16-April-15
1.1	Revised Pin Layout & Application Circuit	Total 32	15-June-15

